#### USC Mark and Mary Stevens Neuroimaging and Informatics Institute

## **Relationships between lifestyle factors, cerebral blood flow, and cognition in healthy older adults**

Laura Fenton<sup>1,3</sup>, Daniel Albrecht<sup>2,3</sup>, Lisette Isenberg<sup>2,3</sup>, Vahan Aslanyan<sup>2,3</sup>, Joy Stradford<sup>2,3</sup>, Teresa Monreal<sup>2,3</sup>, Judy Pa<sup>2,3</sup>

1 Department of Psychology, University of Southern California, Los Angeles, CA, 2 Department of Neurology, University of Southern California, Los Angeles, CA, 3 Laboratory of Neuro Imaging, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Southern California, Los Angeles, CA, 9 Department of Neurology, University of Neur

# Background

- While there is evidence that physical activity (PA) can improve cognition and prevent cognitive decline, our understanding of the mechanisms through which PA exerts these effects remains unclear<sup>1</sup>
- Two recently proposed mechanisms which warrant further investigation are cerebral blood flow (CBF) and sleep efficiency<sup>2</sup>.

# Objectives

- To examine relationships between PA, sleep efficiency, CBF and cognitive ability in a sample of sedentary non-demented older adults
- To investigate sleep efficiency and global gray matter CBF as potential mediators of the relationship between PA and cognitive ability

# Methods

| Study Demographics  |                 | Measures                                                                                                                                                                        |
|---------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N                   | 47              | Physical Activity and Sleep Efficiency                                                                                                                                          |
| M/F                 | 15/32           | • Physical activity and sleep efficiency were measured using GENEActiv accelerometer which participants wore 24 hou days preceding their in-person visit. Measures were average |
| Age                 | 66.45 (6.79)    | • Physical activity measures were categorized by gravitationa units into light (30–100 mg) and moderate to vigorous PA (                                                        |
| Edu                 | 16.49 (2.47)    | <ul> <li>mg)</li> <li>Sleep efficiency = time asleep / time in bed.</li> </ul>                                                                                                  |
| ApoE+/<br>ApoE-     | 13/34           | <ul> <li>Cerebral Blood Flow</li> <li>Global gray matter CBF was quantified using a pseudo-con<br/>arterial spin labeling MRI scan</li> </ul>                                   |
| MoCA                | 26.13 (2.36)    | <ul> <li>Neuropsychological Measures</li> <li>The Montreal Cognitive Assessment (MoCA), Flanker Tasl</li> </ul>                                                                 |
| CVLT                | 21.89 (6.21)    | congruent and incongruent trials – lower scores indicate be performance), and California Verbal Learning Test (CVLT)                                                            |
| Flanker             | 1.23 (.10)      | long delay free recall) were used to assess cognitive ability <b>Statistical Analyses</b>                                                                                       |
| Light PA            | 479.54 (243.66) | • Linear regression analyses adjusting for age, sex, education status were conducted to examine the relationships between                                                       |
| MVPA                | 31.77 (32.53)   | <ul><li>efficiency, CBF, and cognitive ability.</li><li>Indirect effects of PA on cognitive ability were assessed us</li></ul>                                                  |
| Sleep<br>Efficiency | .73 (.05)       | <ul> <li>lavaan</li> <li>Exploratory analyses examined the role of gender in relation between PA, sleep efficiency, CBF, and cognitive ability</li> </ul>                       |

## References

1 Kramer, A. F., & Colcombe, S. (2018). Fitness effects on the cognitive function of older adults: a meta-analytic study—revisited. Perspectives on Psychological Science, 13(2), 213-217.

2 Stillman, C. M., Cohen, J., Lehman, M. E., & Erickson, K. I. (2016). Mediators of physical activity on neurocognitive function: a review at multiple levels of analysis. Frontiers in human neuroscience, 10, 626.

### the urs/day for 30 ged across days. al acceleration (MVPA) (100 +

### ntinuous

k (ratio of etter (short and

on and ApoE en PA, sleep

sing sem from

### onships

## Results

- Sleep efficiency and global gray matter CBF are significantly related to global cognition • No significant relationships between PA and cognition or between PA and sleep efficiency were
- observed. Relationships between PA and CBF were significantly related only in women. • Cerebral blood flow was not a significant mediator of the relationship between PA and cognition.
- A. Sleep Efficiency ~ Physical Activity

|                     | Light PA                                   | MVPA                              |  |
|---------------------|--------------------------------------------|-----------------------------------|--|
| Sleep<br>Efficiency | $\beta$ =2.76e <sup>-05</sup> ,<br>p = .42 | $\beta = 8.17e^{-05},$<br>p = .77 |  |

**C. CBF** ~ Physical Activity

| <b>CBF ~ Physical Activity</b> |          |                    | D. | D. Cognitive Abi |     |
|--------------------------------|----------|--------------------|----|------------------|-----|
|                                | Light PA | MVPA               |    |                  |     |
| CBF                            | β=0.01,  | β=0.01,            |    | CBF              | β=  |
|                                | p = .11  | $\mathbf{p} = .82$ |    |                  | p < |

Table 1: Significant relationships are shown in bold. Models were adjusted for age, sex, education and ApoE status. MoCA = Montreal Cognitive Assessment total score; CVLT = California Verbal Learning Test short and long delay free recall; Flanker = Difference in reaction time for congruent and incongruent trials. Lower scores indicate better performance.



### Higher sleep efficiency is associated with increased global gray matter CBF



predictive of gray matter CBF across all subjects (p < .05)

## Discussion

### Conclusions

- The effect of light levels of physical activity on cerebral blood flow differs based on gender
- Cerebral blood flow and sleep efficiency may interact to influence cognitive ability, rather than through separate mechanisms

## **Future Directions**

- Analyze day-to-day patterns of physical activity and sleep efficiency using time series analysis, and investigate how these patterns influence cognition and CBF.
- Investigate relationships between PA, sleep efficiency, cognition, and **ROI specific** CBF. Lab website: thepalab.com Email: lefenton@usc.edu



**B.** Cognitive Ability ~ Sleep Efficiency

| 9          |          |          |          |
|------------|----------|----------|----------|
|            | MoCA     | CVLT     | Flanker  |
| Sleep      | β=13.10, | β=19.37, | β=-0.54, |
| Efficiency | p < .05  | p = .285 | p = .06  |

| ity | $\sim$ | CB | <b>F</b> |
|-----|--------|----|----------|
|     |        |    |          |

| oCA CV                             | <b>M F</b>        | anker           |
|------------------------------------|-------------------|-----------------|
| <b>=0.10,</b> β=0 < <b>.05</b> p = | .10, β=<br>.42 p= | 0.003,<br>= .11 |